Study note on transformer
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Abstract

This is an informal study note about the original transformer paper [1], and the goal is to lay out the mathematical
details for a sequence-to-sequence task.

Preliminary

Here, we try to lay out the whole mathematical structure of a transformer model on an example of
language translation [1, 2]. Suppose that we want to translate a sentence with n words in one
language [x1,X%,..,X,..,Xy] into a sentence with m words in another language
[V1, Y25 s Yes s Ym], Where x; € V, and y; € V,,. V, and V, are the collections of all words in the
two languages, respectively, and they have N, and N,, words, respectively. We assume that all the
words are represented as one-hot vectors
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where the length of the vector x; is N,, and the length of the vector y. is N,,. All words are
embedded into d-vectors with some learned word embedding [1]:

x; = SomeLearnedWordEmbedding(x]) € R%
y. = SomeLearnedWordEmbedding(y,) € R%

Positional encoding might be needed since the word order in a sentence matters, although I don’t
think it is necessary at all [1]:

pi € R, (p;)y; = sin (m), (Pi)2141 = cos (W), 1=0,1,..,d/2
We combine the word embedding and the positional encoding by adding them together [1]:
x; < x; +p; €R?

Ve < Ve +p. €R?



You may rescale the word embedding by a factor of Vd in certain cases.

Encoder

Now, we construct the encoder. An encoder contains N identical blocks of computing units, and
each computing unit is a mapping fp: R¥*™ — R**" where 6 represents the trainable parameters.
For the first block, the input is X = [x1, %X, ..., X}, ..., X,] € R¥™ and the output is Z =
(21,22, coer Ziy v, Zn] € RP™, Let’s break down the mapping fp. Each column of the input is
mapped to three types of vectors, called the queries Q™ (x;) € R¥, the keys K™ (x;) € R¥, and
the values VM (x;) € Rk, where h = 1, 2, ..., H indicates different functions in different attention
heads. The simplest forms of the 3H functions, Q, K, V, could be linear transformations by 3H
matrices, respectively [2]. The core concept of the transformer is the acausal self-attention weights
defined as some normalized kernels:

exp [(Q(h) (x), KM (x))
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where (-,") represents the dot product. The self-attention value for x; is [2]:
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where Wo(h) € R%*k_ A residual connection is used [3], followed by a layer normalization [4]:

e R

u; = LayerNorm(u} + x;;4, 1) € R4
A feedforward layer follows with the residual connection and the layer normalization:
z] = WoReLU(Wju; + b;) € R?
z; = LayerNorm(z] + u;; ¥, 5,) € R%
where W, € R¥*4, W, € R¥*%s, b; € R,

The LayerNorm function on a d-vector v is defined as [5]:

v —
LayerNorm(v;y,B) = )/@TM + B v,B €R?
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where © represents element-wise multiplications.

Thus, we have defined the mapping for the first block of the computing unit z; = fy(x;), and the
trainable parameters 6 include the parameters in the functions Q(h), K® v and matrices Wo(h),
W, , W,, and vectors Yy, B1, Y2, B2, b;. The whole encoder applies this mapping N times:

N .
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Note that all trainable parameters are independently trained in blocks 1 to N.

Decoder

Like the encoder, the decoder also constitutes N identical blocks of computing units followed by
a linear transform and a softmax operation. To be specific, we assume that we have already had
the first ¢ words in the translated sentence: y,,y,, ..., Y., and the decoder is trying to predict the
(¢ + 1)th word in the target language. With this assumption, each block is then a mapping

Jor: R¥*¢ — R¥*¢ and has three sub-layers. The first layer is the multi-head causal self-
attention layer with the queries Q'™ ;) € R, the keys K'™ ;) € R¥, and the values

p' (yj) € R¥, where j=1,2,..,cand h = 1,2, ..., H indicates different functions in different
attention heads. We can calculate the causal attention weights:

exp l(Q'(h) (y;), k'™ (}’r))l
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The attention value for y; is:

H j
v]f = Z Wé(h) Z a’}f)V’(h) (y,) € R4
h=1 r=1

where W, (M) & R4k Note that the second sum in the above equation is only up to j, which is
the reason that this is a causal attention layer compared with the acausal attention layer in the
encoder. A residual connection is used, followed by a layer normalization:

v = LayerNorm(v} + in¥3»33) € R

A decoder block has a second attention layer that has the keys K"’ (Zi(N)) € R* and the values

yr® (Zi(N)) € R* from the final output of the encoder, and the queries from the previous



attention layer of the decoder block, Q”(h) (vj)) € R¥. We can calculate the attention weights for
this layer:

exp
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The attention value for V; is:
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where W/ (M) & Raxk_ A residual connection is used, followed by a layer normalization:
w; = LayerNorm(w/ + v}; ¥4, B) € R?
A feedforward layer follows with the residual connection and the layer normalization:
o] = W,ReLU(W;w; + b,) € R?
o; = LayerNorm(o] + wj; vs, Bs) € R?
where W, € RY*4, W, € R*%and b, € RY.

We have thus defined the mapping for the first block of the computing unit 0; = go/(y;), and the
trainable parameters 6’ include the parameters in the functions Q”"™, K"’ V""" and matrices

W™, W™, Wy, W, and vectors ¥s, Bz, Ya, Ba» ¥s, Bs. bs. The decoder applies this mapping N
times:
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Note that all trainable parameters are independently trained in blocks 1 to N.

A linear operation W € RV»*¢ transforms ogN) to a N, -vector that is sent to a softmax function

to get probabilities over the entire vocabulary of the target language:
p= softmax[WFogN)] € RV

The word with the highest probability is assigned as the (¢ + 1)th word in the target sentence.
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