Study note on transformer

Baohua Zhou

Yale University baohua.x.zhou@gmail.com

Abstract

This is an informal study note about the original transformer paper [1], and the goal is to lay out the mathematical details for a sequence-to-sequence task.

Preliminary

Here, we try to lay out the whole mathematical structure of a transformer model on an example of language translation [1, 2]. Suppose that we want to translate a sentence with n words in one language $[x'_1, x'_2, ..., x'_i, ..., x'_n]$ into a sentence with m words in another language $[y'_1, y'_2, ..., y'_c, ..., y'_m]$, where $x'_i \in V_x$ and $y'_c \in V_y$. V_x and V_y are the collections of all words in the two languages, respectively, and they have N_x and N_y words, respectively. We assume that all the words are represented as one-hot vectors

$$x_i' = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \qquad y_c' = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix}$$

where the length of the vector x'_i is N_x , and the length of the vector y'_c is N_y . All words are embedded into d-vectors with some learned word embedding [1]:

 $x_i = \text{SomeLearnedWordEmbedding}(x_i') \in \mathbb{R}^d$

 $y_c = \text{SomeLearnedWordEmbedding}(y_c') \in \mathbb{R}^d$

Positional encoding might be needed since the word order in a sentence matters, although I don't think it is necessary at all [1]:

$$p_i \in \mathbb{R}^d$$
, $(p_i)_{2l} = \sin\left(\frac{i}{10000^{2l/d}}\right)$, $(p_i)_{2l+1} = \cos\left(\frac{i}{10000^{2l/d}}\right)$, $l = 0, 1, ..., d/2$

We combine the word embedding and the positional encoding by adding them together [1]:

$$x_i \leftarrow x_i + p_i \in \mathbb{R}^d$$

$$y_c \leftarrow y_c + p_c \in \mathbb{R}^d$$

You may rescale the word embedding by a factor of \sqrt{d} in certain cases.

Encoder

Now, we construct the encoder. An encoder contains N identical blocks of computing units, and each computing unit is a mapping $f_{\theta} \colon \mathbb{R}^{d \times n} \to \mathbb{R}^{d \times n}$, where θ represents the trainable parameters. For the first block, the input is $X = [x_1, x_2, ..., x_i, ..., x_n] \in \mathbb{R}^{d \times n}$ and the output is $Z = [z_1, z_2, ..., z_i, ..., z_n] \in \mathbb{R}^{d \times n}$. Let's break down the mapping f_{θ} . Each column of the input is mapped to three types of vectors, called the queries $Q^{(h)}(x_i) \in \mathbb{R}^k$, the keys $K^{(h)}(x_i) \in \mathbb{R}^k$, and the values $V^{(h)}(x_i) \in \mathbb{R}^k$, where h = 1, 2, ..., H indicates different functions in different attention heads. The simplest forms of the 3H functions, Q, K, V, could be linear transformations by 3H matrices, respectively [2]. The core concept of the transformer is the acausal self-attention weights defined as some normalized kernels:

$$\alpha_{ij}^{(h)} = \frac{\exp\left[\frac{\langle Q^{(h)}(x_i), K^{(h)}(x_j)\rangle}{\sqrt{k}}\right]}{\sum_{j'=1}^n \exp\left[\frac{\langle Q^{(h)}(x_i), K^{(h)}(x_{j'})\rangle}{\sqrt{k}}\right]} \in \mathbb{R}$$

where $\langle \cdot, \cdot \rangle$ represents the dot product. The self-attention value for x_i is [2]:

$$u'_i = \sum_{h=1}^H W_0^{(h)} \sum_{j=1}^n \alpha_{ij}^{(h)} V^{(h)}(x_j) \in \mathbb{R}^d$$

where $W_0^{(h)} \in \mathbb{R}^{d \times k}$. A residual connection is used [3], followed by a layer normalization [4]:

$$u_i = \text{LayerNorm}(u_i' + x_i; \gamma_1, \beta_1) \in \mathbb{R}^d$$

A feedforward layer follows with the residual connection and the layer normalization:

$$z_i' = W_2 \text{ReLU}(W_1 u_i + b_1) \in \mathbb{R}^d$$

 $z_i = \text{LayerNorm}(z_i' + u_i; \gamma_2, \beta_2) \in \mathbb{R}^d$

where $W_1 \in \mathbb{R}^{d_f \times d}$, $W_2 \in \mathbb{R}^{d \times d_f}$, $b_1 \in \mathbb{R}^{d_f}$.

The LayerNorm function on a d-vector v is defined as [5]:

LayerNorm
$$(v; \gamma, \beta) = \gamma \odot \frac{v - \mu}{\sigma} + \beta$$
 $\gamma, \beta \in \mathbb{R}^d$
$$\mu = \frac{1}{d} \sum_{l=1}^{d} v_l, \sigma = \sqrt{\frac{1}{d} \sum_{l=1}^{d} (v_l - \mu)^2}$$

where ① represents element-wise multiplications.

Thus, we have defined the mapping for the first block of the computing unit $z_i = f_{\theta}(x_i)$, and the trainable parameters θ include the parameters in the functions $Q^{(h)}$, $K^{(h)}$, $V^{(h)}$, and matrices $W_0^{(h)}$, W_1 , W_2 , and vectors γ_1 , β_1 , γ_2 , β_2 , b_1 . The whole encoder applies this mapping N times:

$$z_i^{(N)} = f_{\theta_N} \circ \cdots \circ f_{\theta_1}(x_i) \in \mathbb{R}^d, \qquad i = 1, 2, \dots, n$$

Note that all trainable parameters are independently trained in blocks 1 to N.

Decoder

Like the encoder, the decoder also constitutes N identical blocks of computing units followed by a linear transform and a softmax operation. To be specific, we assume that we have already had the first c words in the translated sentence: $y_1, y_2, ..., y_c$, and the decoder is trying to predict the (c+1)th word in the target language. With this assumption, each block is then a mapping $g_{\theta'} \colon \mathbb{R}^{d \times c} \to \mathbb{R}^{d \times c}$, and has three sub-layers. The first layer is the multi-head causal self-attention layer with the queries $Q'^{(h)}(y_j) \in \mathbb{R}^k$, the keys $K'^{(h)}(y_j) \in \mathbb{R}^k$, and the values $V'^{(h)}(y_j) \in \mathbb{R}^k$, where j = 1, 2, ..., c and k = 1, 2, ..., H indicates different functions in different attention heads. We can calculate the causal attention weights:

$$\alpha_{jr}^{\prime(h)} = \frac{\exp\left[\frac{\langle Q^{\prime(h)}(y_j), K^{\prime(h)}(y_r)\rangle}{\sqrt{k}}\right]}{\sum_{r'=1}^{j} \exp\left[\frac{\langle Q^{\prime(h)}(y_j), K^{\prime(h)}(y_{r'})\rangle}{\sqrt{k}}\right]}$$

The attention value for y_i is:

$$v'_{j} = \sum_{h=1}^{H} W'_{o}^{(h)} \sum_{r=1}^{j} \alpha'_{jr}^{(h)} V'^{(h)}(y_{r}) \in \mathbb{R}^{d}$$

where $W_0^{\prime (h)} \in \mathbb{R}^{d \times k}$. Note that the second sum in the above equation is only up to j, which is the reason that this is a causal attention layer compared with the acausal attention layer in the encoder. A residual connection is used, followed by a layer normalization:

$$v_i = \text{LayerNorm}(v_i' + y_i; \gamma_3, \beta_3) \in \mathbb{R}^d$$

A decoder block has a second attention layer that has the keys $K''^{(h)}(z_i^{(N)}) \in \mathbb{R}^k$ and the values $V''^{(h)}(z_i^{(N)}) \in \mathbb{R}^k$ from the final output of the encoder, and the queries from the previous

attention layer of the decoder block, $Q''^{(h)}(v_j) \in \mathbb{R}^k$. We can calculate the attention weights for this layer:

$$\alpha''_{ji}^{(h)} = \frac{\exp\left[\frac{\langle Q''^{(h)}(v_j), K''^{(h)}(z_i^{(N)})\rangle}{\sqrt{k}}\right]}{\sum_{i'=1}^{n} \exp\left[\frac{\langle Q''^{(h)}(v_j), K''^{(h)}(z_{i'}^{(N)})\rangle}{\sqrt{k}}\right]}$$

The attention value for v_i is:

$$w'_{j} = \sum_{h=1}^{H} W''_{0}^{(h)} \sum_{i=1}^{n} \alpha''_{ji}^{(h)} V''^{(h)}(z_{i}^{(N)}) \in \mathbb{R}^{d}$$

where $W_0''^{(h)} \in \mathbb{R}^{d \times k}$. A residual connection is used, followed by a layer normalization:

$$w_i = \text{LayerNorm}(w_i' + v_i; \gamma_4, \beta_4) \in \mathbb{R}^d$$

A feedforward layer follows with the residual connection and the layer normalization:

$$o_i' = W_4 \text{ReLU}(W_3 w_i + b_2) \in \mathbb{R}^d$$

$$o_j = \text{LayerNorm}(o'_i + w_j; \gamma_5, \beta_5) \in \mathbb{R}^d$$

where $W_3 \in \mathbb{R}^{d_f \times d}$, $W_4 \in \mathbb{R}^{d \times d_f}$ and $b_2 \in \mathbb{R}^{d_f}$.

We have thus defined the mapping for the first block of the computing unit $o_j = g_{\theta'}(y_j)$, and the trainable parameters θ' include the parameters in the functions $Q''^{(h)}$, $K''^{(h)}$, $V''^{(h)}$, and matrices $W_0'^{(h)}$, $W_0''^{(h)}$, W_3 , W_4 , and vectors γ_3 , β_3 , γ_4 , β_4 , γ_5 , β_5 , b_3 . The decoder applies this mapping N times:

$$o_j^{(N)} = g_{\theta_N'} \circ \cdots \circ g_{\theta_1'}(y_j) \in \mathbb{R}^d, \quad j = 1, 2, \dots, c$$

Note that all trainable parameters are independently trained in blocks 1 to N.

A linear operation $W_F \in \mathbb{R}^{N_y \times d}$ transforms $o_c^{(N)}$ to a N_y -vector that is sent to a softmax function to get probabilities over the entire vocabulary of the target language:

$$p = \operatorname{softmax} \left[W_F o_c^{(N)} \right] \in \mathbb{R}^{N_y}$$

The word with the highest probability is assigned as the (c + 1)th word in the target sentence.

Acknowledgement

The author thanks Awni Altabaa and StatQuest with Josh Starmer for clarifying certain concepts.

References

- [1] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N. & Kaiser, L. (2017). Attention is all you need. *Advances in Neural Information Processing Systems*.
- [2] Thickstun, J. (2021). The transformer model in equations. *University of Washington: Seattle, WA, USA*.
- [3] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition* (pp. 770-778).
- [4] Ba, J. L., Kiros, J. R. & Hinton, G. E. (2016). Layer normalization. *arXiv preprint* arXiv:1607.06450.