
Study note on transformer

Baohua Zhou

Yale University

baohua.x.zhou@gmail.com

Abstract

This is an informal study note about the original transformer paper [1], and the goal is to lay out the mathematical

details for a sequence-to-sequence task.

Preliminary

Here, we try to lay out the whole mathematical structure of a transformer model on an example of

language translation [1, 2]. Suppose that we want to translate a sentence with 𝑛 words in one

language [𝑥1
′ , 𝑥2

′ , … , 𝑥𝑖
′, … , 𝑥𝑛

′] into a sentence with 𝑚 words in another language

[𝑦1
′ , 𝑦2

′ , … , 𝑦𝑐
′, … , 𝑦𝑚

′], where 𝑥𝑖
′ ∈ 𝑉𝑥 and 𝑦𝑐

′ ∈ 𝑉𝑦. 𝑉𝑥 and 𝑉𝑦 are the collections of all words in the

two languages, respectively, and they have 𝑁𝑥 and 𝑁𝑦 words, respectively. We assume that all the

words are represented as one-hot vectors

𝑥𝑖
′ =

[

0
0
⋮
1
⋮
0]

, 𝑦𝑐
′ =

[

0
0
⋮
1
⋮
0]

where the length of the vector 𝑥𝑖
′ is 𝑁𝑥 , and the length of the vector 𝑦𝑐

′ is 𝑁𝑦 . All words are

embedded into 𝑑-vectors with some learned word embedding [1]:

𝑥𝑖 = SomeLearnedWordEmbedding(𝑥𝑖
′) ∈ ℝ𝑑

𝑦𝑐 = SomeLearnedWordEmbedding(𝑦𝑐
′) ∈ ℝ𝑑

Positional encoding might be needed since the word order in a sentence matters, although I don’t

think it is necessary at all [1]:

𝑝𝑖 ∈ ℝ𝑑 , (𝑝𝑖)2𝑙 = sin (
𝑖

100002𝑙/𝑑) , (𝑝𝑖)2𝑙+1 = cos (
𝑖

100002𝑙/𝑑), 𝑙 = 0, 1,… , 𝑑/2

We combine the word embedding and the positional encoding by adding them together [1]:

𝑥𝑖 ← 𝑥𝑖 + 𝑝𝑖 ∈ ℝ𝑑

𝑦𝑐 ← 𝑦𝑐 + 𝑝𝑐 ∈ ℝ𝑑

You may rescale the word embedding by a factor of √𝑑 in certain cases.

Encoder

Now, we construct the encoder. An encoder contains 𝑁 identical blocks of computing units, and

each computing unit is a mapping 𝑓𝜃: ℝ𝑑×𝑛 → ℝ𝑑×𝑛, where 𝜃 represents the trainable parameters.

For the first block, the input is 𝑋 = [𝑥1, 𝑥2, … , 𝑥𝑖 , … , 𝑥𝑛] ∈ ℝ𝑑×𝑛 and the output is 𝑍 =

[𝑧1, 𝑧2, … , 𝑧𝑖 , … , 𝑧𝑛] ∈ ℝ𝑑×𝑛 . Let’s break down the mapping 𝑓𝜃 . Each column of the input is

mapped to three types of vectors, called the queries 𝑄(ℎ)(𝑥𝑖) ∈ ℝ𝑘, the keys 𝐾(ℎ)(𝑥𝑖) ∈ ℝ𝑘, and

the values 𝑉(ℎ)(𝑥𝑖) ∈ ℝ𝑘, where ℎ = 1, 2,… , 𝐻 indicates different functions in different attention

heads. The simplest forms of the 3𝐻 functions, 𝑄,𝐾, 𝑉, could be linear transformations by 3𝐻

matrices, respectively [2]. The core concept of the transformer is the acausal self-attention weights

defined as some normalized kernels:

𝛼𝑖𝑗
(ℎ)

=

exp [
〈𝑄(ℎ)(𝑥𝑖),𝐾

(ℎ)(𝑥𝑗)〉

√𝑘
]

∑ exp [
〈𝑄(ℎ)(𝑥𝑖),𝐾

(ℎ)(𝑥𝑗′)〉

√𝑘
]𝑛

𝑗′=1

∈ ℝ

where 〈∙,∙〉 represents the dot product. The self-attention value for 𝑥𝑖 is [2]:

𝑢𝑖
′ = ∑ 𝑊𝑂

(ℎ)
∑𝛼𝑖𝑗

(ℎ)
𝑉(ℎ)(𝑥𝑗)

𝑛

𝑗=1

𝐻

ℎ=1

∈ ℝ𝑑

where 𝑊𝑂
(ℎ)

∈ ℝ𝑑×𝑘. A residual connection is used [3], followed by a layer normalization [4]:

𝑢𝑖 = LayerNorm(𝑢𝑖
′ + 𝑥𝑖; 𝛾1 , 𝛽1) ∈ ℝ𝑑

A feedforward layer follows with the residual connection and the layer normalization:

𝑧𝑖
′ = 𝑊2ReLU(𝑊1𝑢𝑖 + 𝑏1) ∈ ℝ𝑑

𝑧𝑖 = LayerNorm(𝑧𝑖
′ + 𝑢𝑖; 𝛾2 , 𝛽2) ∈ ℝ𝑑

where 𝑊1 ∈ ℝ𝑑𝑓×𝑑, 𝑊2 ∈ ℝ𝑑×𝑑𝑓, 𝑏1 ∈ ℝ𝑑𝑓.

The LayerNorm function on a 𝑑-vector 𝑣 is defined as [5]:

LayerNorm(𝑣; 𝛾, 𝛽) = 𝛾⨀
𝑣 − 𝜇

𝜎
+ 𝛽 𝛾, 𝛽 ∈ ℝ𝑑

𝜇 =
1

𝑑
∑ 𝑣𝑙

𝑑
𝑙=1 , 𝜎 = √

1

𝑑
∑ (𝑣𝑙 − 𝜇)2𝑑

𝑙=1

where ⨀ represents element-wise multiplications.

Thus, we have defined the mapping for the first block of the computing unit 𝑧𝑖 = 𝑓𝜃(𝑥𝑖), and the

trainable parameters 𝜃 include the parameters in the functions 𝑄(ℎ), 𝐾(ℎ), 𝑉(ℎ), and matrices 𝑊𝑂
(ℎ)

,

𝑊1, 𝑊2, and vectors 𝛾1, 𝛽1, 𝛾2, 𝛽2, 𝑏1. The whole encoder applies this mapping 𝑁 times:

𝑧𝑖
(𝑁)

= 𝑓𝜃𝑁
∘ ⋯ ∘ 𝑓𝜃1

(𝑥𝑖) ∈ ℝ𝑑 , 𝑖 = 1, 2, … , 𝑛

Note that all trainable parameters are independently trained in blocks 1 to 𝑁.

Decoder

Like the encoder, the decoder also constitutes 𝑁 identical blocks of computing units followed by

a linear transform and a softmax operation. To be specific, we assume that we have already had

the first 𝑐 words in the translated sentence: 𝑦1, 𝑦2, … , 𝑦𝑐, and the decoder is trying to predict the

(𝑐 + 1)th word in the target language. With this assumption, each block is then a mapping

𝑔𝜃′: ℝ𝑑×𝑐 → ℝ𝑑×𝑐 , and has three sub-layers. The first layer is the multi-head causal self-

attention layer with the queries 𝑄′(ℎ)(𝑦𝑗) ∈ ℝ𝑘, the keys 𝐾′(ℎ)(𝑦𝑗) ∈ ℝ𝑘, and the values

𝑉′(ℎ)(𝑦𝑗) ∈ ℝ𝑘, where 𝑗 = 1, 2, … , 𝑐 and ℎ = 1, 2,… ,𝐻 indicates different functions in different

attention heads. We can calculate the causal attention weights:

𝛼′𝑗𝑟
(ℎ)

=

exp [
〈𝑄′(ℎ)(𝑦𝑗),𝐾′(ℎ)(𝑦𝑟)〉

√𝑘
]

∑ exp [
〈𝑄′(ℎ)(𝑦𝑗),𝐾′(ℎ)(𝑦𝑟′)〉

√𝑘
]

𝑗

𝑟′=1

The attention value for 𝑦𝑗 is:

𝑣𝑗
′ = ∑ 𝑊𝑂

′ (ℎ)
∑𝛼′𝑗𝑟

(ℎ)
𝑉′(ℎ)(𝑦𝑟)

𝑗

𝑟=1

𝐻

ℎ=1

∈ ℝ𝑑

where 𝑊𝑂
′ (ℎ)

∈ ℝ𝑑×𝑘. Note that the second sum in the above equation is only up to 𝑗, which is

the reason that this is a causal attention layer compared with the acausal attention layer in the

encoder. A residual connection is used, followed by a layer normalization:

𝑣𝑗 = LayerNorm(𝑣𝑗
′ + 𝑦𝑗; 𝛾3 , 𝛽3) ∈ ℝ𝑑

A decoder block has a second attention layer that has the keys 𝐾′′(ℎ)(𝑧𝑖
(𝑁)

) ∈ ℝ𝑘 and the values

𝑉′′(ℎ)
(𝑧𝑖

(𝑁)
) ∈ ℝ𝑘 from the final output of the encoder, and the queries from the previous

attention layer of the decoder block, 𝑄′′(ℎ)
(𝑣𝑗) ∈ ℝ𝑘. We can calculate the attention weights for

this layer:

𝛼′′𝑗𝑖
(ℎ)

=

exp [
〈𝑄′′(ℎ)(𝑣𝑗),𝐾

′′(ℎ)(𝑧𝑖
(𝑁)

)〉

√𝑘
]

∑ exp [
〈𝑄′′(ℎ)(𝑣𝑗),𝐾′′(ℎ)(𝑧

𝑖′
(𝑁)

)〉

√𝑘
]𝑛

𝑖′=1

The attention value for 𝑣𝑗 is:

𝑤𝑗
′ = ∑ 𝑊𝑂

′′(ℎ)
∑𝛼′′𝑗𝑖

(ℎ)
𝑉′′(ℎ)(𝑧𝑖

(𝑁)
)

𝑛

𝑖=1

𝐻

ℎ=1

∈ ℝ𝑑

where 𝑊𝑂
′′(ℎ)

∈ ℝ𝑑×𝑘. A residual connection is used, followed by a layer normalization:

𝑤𝑗 = LayerNorm(𝑤𝑗
′ + 𝑣𝑗; 𝛾4 , 𝛽4) ∈ ℝ𝑑

A feedforward layer follows with the residual connection and the layer normalization:

𝑜𝑗
′ = 𝑊4ReLU(𝑊3𝑤𝑗 + 𝑏2) ∈ ℝ𝑑

𝑜𝑗 = LayerNorm(𝑜𝑗
′ + 𝑤𝑗; 𝛾5, 𝛽5) ∈ ℝ𝑑

where 𝑊3 ∈ ℝ𝑑𝑓×𝑑, 𝑊4 ∈ ℝ𝑑×𝑑𝑓and 𝑏2 ∈ ℝ𝑑𝑓.

We have thus defined the mapping for the first block of the computing unit 𝑜𝑗 = 𝑔𝜃′(𝑦𝑗), and the

trainable parameters 𝜃′ include the parameters in the functions 𝑄′′(ℎ), 𝐾′′(ℎ), 𝑉′′(ℎ), and matrices

𝑊𝑂
′ (ℎ)

,𝑊𝑂
′′(ℎ)

, 𝑊3, 𝑊4, and vectors 𝛾3, 𝛽3, 𝛾4, 𝛽4, 𝛾5, 𝛽5, 𝑏3. The decoder applies this mapping 𝑁

times:

𝑜𝑗
(𝑁)

= 𝑔𝜃𝑁
′ ∘ ⋯ ∘ 𝑔𝜃1

′(𝑦𝑗) ∈ ℝ𝑑 , 𝑗 = 1, 2,… , 𝑐

Note that all trainable parameters are independently trained in blocks 1 to 𝑁.

A linear operation 𝑊𝐹 ∈ ℝ𝑁𝑦×𝑑 transforms 𝑜𝑐
(𝑁)

 to a 𝑁𝑦-vector that is sent to a softmax function

to get probabilities over the entire vocabulary of the target language:

𝑝 = softmax[𝑊𝐹𝑜𝑐
(𝑁)

] ∈ ℝ𝑁𝑦

The word with the highest probability is assigned as the (𝑐 + 1)th word in the target sentence.

Acknowledgement

The author thanks Awni Altabaa and StatQuest with Josh Starmer for clarifying certain concepts.

References

[1] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N. & Kaiser, L.

(2017). Attention is all you need. Advances in Neural Information Processing Systems.

[2] Thickstun, J. (2021). The transformer model in equations. University of Washington: Seattle,

WA, USA.

[3] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition.

In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-

778).

[4] Ba, J. L., Kiros, J. R. & Hinton, G. E. (2016). Layer normalization. arXiv preprint

arXiv:1607.06450.

